(本小题满分12分)已知函数在x=1处的切线方程为x-y=1.(1)求f(x)的表达式;(2)若f(x)≥g(x)恒成立,则称f(x)为g(x)的一个“上界函数”,当(1)中的函数f(x)为函数g(x)=lnx(t∈R)的一个上界函数时,求实数t的取值范围;(3)当m>0时,对于(1)中的f(x),讨论F(x)= f(x)+在区间(0,2)上极值点的个数.
(本小题满分10分)选修4-5:不等式选讲 设() (Ⅰ)当时,求函数的定义域; (Ⅱ)若当,恒成立,求实数的取值范围.
(本小题满分10分)选修4—4;坐标系与参数方程. 已知直线为参数), 曲线(为参数). (Ⅰ)设与相交于两点,求; (Ⅱ)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.
(本小题满分12分)已知函数. (Ⅰ)当时,讨论的单调性; (Ⅱ)当时,对于任意的,证明:不等式
(本小题满分12分)已知椭圆经过点,且两焦点与短轴的一个端点的连线构成等腰直角三角形. (1)求椭圆的方程; (2)动直线交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T。若存在,求出点T的坐标;若不存在,请说明理由.
(本小题满分12分)如图,四棱锥的底面为菱形,平面,,分别为的中点,. (Ⅰ)求证:平面平面. (Ⅱ)求平面与平面所成的锐二面角的余弦值.