如图,是直角,圆与射线相切于点,与射线相交于两点.求证:平分.
(本小题满分12分)已知函数的图象与轴分别相交于点两点,向量,,又函数,且的值域是,。(1)求, 及的值;(2)当满足时,求函数的最小值。
已知函数.(Ⅰ)解不等式;(Ⅱ)若的定义域为,求实数的取值范围.
已知极坐标的极点与平面直角坐标系的原点重合,极轴与轴的正半轴重合,且长度单位相同.圆的参数方程为(为参数),点的极坐标为.(Ⅰ)化圆的参数方程为极坐标方程;(Ⅱ)若点是圆上的任意一点, 求,两点间距离的最小值.
如图,直线AB经过⊙O上一点C,且OA=OB,CA=CB,⊙O交直线OB于E、D.(Ⅰ)求证:直线AB是⊙O的切线;(Ⅱ)若⊙O的半径为3,求OA的长.
已知函数,其中常数 .(Ⅰ)当时,求的极大值;(Ⅱ)试讨论在区间上的单调性;(3)当时,曲线上总存在相异两点,,使曲线在点处的切线互相平行,求的取值范围.