已知圆C过点A(1,3),B(2,2),并且直线m:平分圆C的面积.(Ⅰ)求圆C的方程;(Ⅱ)若过点D(0,1)且斜率为k的直线与圆C有两个不同的公共点M、N,若(O为原点),求k的值.
三人独立破译同一份密码.已知三人各自破译出密码的概率分别 为且他们是否破译出密码互不影响. (1)求恰有二人破译出密码的概率; (2)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.
已知圆C的圆心C(-1,2),且圆C经过原点。 (1)求圆C的方程 (2)过原点作圆C的切线,求切线的方程。 (3)过点的直线被圆C截得的弦长为,求直线的方程。
设函数. (1)求在上的值域. (2)设A,B,C为ABC的三个内角,若角C满足且边,求角.
函数的定义域关于原点对称,但不包括数0,对定义域中的任意实数,在定义域中存在使,,且满足以下3个条件。 (1)是定义域中的数,,则 (2),(是一个正的常数) (3)当时,。 证明:(1)是奇函数; (2)是周期函数,并求出其周期; (3)在内为减函数。
设函数,对于满足的一切值都有,求实数的取值范围。