从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均值和样本方差(同一组的数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标服从正态分布,其中近似为样本平均数,近似为样本方差.(ⅰ)利用该正态分布,求;(ⅱ)某用户从该企业购买了100件这种产品,记表示这100件产品中质量指标值位于区间的产品件数.利用(ⅰ)的结果,求.附:若则,.
在梯形中,,,,,如图把沿翻折,使得平面平面. (Ⅰ)求证:平面; (Ⅱ)若点为线段中点,求点到平面的距离.
已知某校四个社团的学生人数分别为10,5,20,15.现为了了解社团活动开展情况,用分层抽样的方法从四个社团的学生当中随机抽取10名学生参加问卷调查. (Ⅰ)从四个社团中各抽取多少人? (Ⅱ)在社团所抽取的学生总数中,任取2个,求社团中各有1名学生的概率.
已知是一个单调递增的等差数列,且满足,,数列的前项和为. (Ⅰ)求数列的通项公式;(Ⅱ)证明数列是等比数列.
选修4—5: 不等式选讲. (Ⅰ)设函数.证明:; (Ⅱ)若实数满足,求证:
选修4—4:坐标系与参数方程. 坐标系与参数方程在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆C的极坐标方程; (Ⅱ)射线与圆C的交点为O、P两点,求P点的极坐标.