(本小题满分13分)在某校教师趣味投篮比赛中,比赛规则是: 每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是.(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;(Ⅱ)求教师甲在一场比赛中获奖的概率;(Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗?
已知:定义在R上的函数,对于任意实数a, b都满足,且,网当. (Ⅰ)求的值; (Ⅱ)证明在上是增函数; (Ⅲ)求不等式的解集.
已知. (1)证明为奇函数; (2)求使>0成立的的集合.
已知函数是定义在上的偶函数,当时,. (1)求的函数解析式,并用分段函数的形式给出; (2)作出函数的简图; (3)写出函数的单调区间及最值.
铁路运输托运行李,从甲地到乙地,规定每张客票托运费计算方法为:行李质量不超过,按元计算;超过而不超过时,其超过部分按元计算,超过时,其超过部分按元计算.设行李质量为,托运费用为元. (Ⅰ)写出函数的解析式; (Ⅱ)若行李质量为,托运费用为多少?
计算下列各题: (1); (2).