已知首项为的等比数列的前n项和为,且成等差数列.(Ⅰ)求数列的通项公式; (Ⅱ)证明.
由于卫生的要求游泳池要经常换水(进一些干净的水同时放掉一些脏水), 游泳池的水深经常变化,已知泰州某浴场的水深(米)是时间,(单位小时)的函数,记作,下表是某日各时的水深数据
经长期观测的曲线可近似地看成函数 (Ⅰ)根据以上数据,求出函数的最小正周期T,振幅A及函数表达式;(Ⅱ)依据规定,当水深大于2米时才对游泳爱好者开放,请依据(1)的结论,判断一天内的上午8 00至晚上20 00之间,有多少时间可供游泳爱好者进行运动
(本小题满分16分)已知二次函数g(x)对任意实数x都满足,且.令.(1)求 g(x)的表达式; (2)若使成立,求实数m的取值范围;(3)设,,证明:对,恒有
(本小题满分16分)已知椭圆的离心率为,过右顶点A的直线l与椭圆C相交于A、B两点,且. (1)求椭圆C和直线l的方程;(2)记曲线C在直线l下方的部分与线段AB所围成的平面区域(含边界)为D.若曲线与D有公共点,试求实数m的最小值.
(本小题满分15分)某地有三个村庄,分别位于等腰直角三角形ABC的三个顶点处,已知AB=AC=6km,现计划在BC边的高AO上一点P处建造一个变电站. 记P到三个村庄的距离之和为y. (1)设,把y表示成的函数关系式;(2)变电站建于何处时,它到三个小区的距离之和最小?
设函数 f ( x ) = x 3 + a x 2 - a 2 x + 1 , g ( x ) = a x 2 - 2 x + 1 其中实数 a ≠ 0 . (Ⅰ)若 a > 0 ,求函数 f ( x ) 的单调区间; (Ⅱ)当函数 y = f ( x ) 与 y = g ( x ) 的图象只有一个公共点且 g ( x ) 存在最小值时,记 g ( x ) 的最小值为 h ( a ) ,求 h ( a ) 的值域; (Ⅲ)若 f ( x ) 与 g ( x ) 在区间 ( a , a + 2 ) 内均为增函数,求 a 的取值范围.