设函数 f ( x ) = x 3 + a x 2 - a 2 x + 1 , g ( x ) = a x 2 - 2 x + 1 其中实数 a ≠ 0 . (Ⅰ)若 a > 0 ,求函数 f ( x ) 的单调区间; (Ⅱ)当函数 y = f ( x ) 与 y = g ( x ) 的图象只有一个公共点且 g ( x ) 存在最小值时,记 g ( x ) 的最小值为 h ( a ) ,求 h ( a ) 的值域; (Ⅲ)若 f ( x ) 与 g ( x ) 在区间 ( a , a + 2 ) 内均为增函数,求 a 的取值范围.
已知椭圆,过其左焦点且斜率为的直线与椭圆及其准线的交点从左到右的顺序为(如图),设. (1)求的解析式; (2)求的最值.
四点都在椭圆上,为椭圆在轴正半轴上的焦点.已知与共线,与共线,且.求四边形的面积的最小值和最大值.
已知双曲线,直线,试讨论实数的取值范围. (1)直线与双曲线有两个公共点; (2)直线与双曲线只有一个公共点; (3)与双曲线没有公共点.
已知实数满足,求的最大值与最小值.
如图,,为椭圆:的左、右两个焦点,直线:与椭圆交于两点,,已知椭圆中心点关于的对称点恰好落在的左准线上. ⑴求准线的方程; ⑵已知,,成等差数列,求椭圆的方程.