(本小题满分12分)如图,矩形所在的平面与等边所在的平面垂直,,为的中点.(1)求证:;(2)求二面角的余弦值.
已知数列满足,且对任意非负整数均有:. (1)求; (2)求证:数列是等差数列,并求的通项; (3)令,求证:.
已知函数. (1)若在区间单调递增,求的最小值; (2)若,对,使成立,求的范围.
如图四棱锥中,底面是平行四边形,平面,垂足为,在上且,,,是的中点,四面体的体积为. (1)求二面角的正切值; (2)求直线到平面所成角的正弦值; (3)在棱上是否存在一点,使异面直线与所成的角为,若存在,确定点的位置,若不存在,说明理由.
成都七中为绿化环境,移栽了银杏树2棵,梧桐树3棵。它们移栽后的成活率分别为且每棵树是否存活互不影响,求移栽的5棵树中: (1)银杏树都成活且梧桐树成活2棵的概率; (2)成活的棵树的分布列与期望.
已知为坐标原点,,. (Ⅰ)若的定义域为,求的单调递增区间; (Ⅱ)若的定义域为,值域为,求的值.