(本小题满分12分)如图,矩形所在的平面与等边所在的平面垂直,,为的中点.(1)求证:;(2)求二面角的余弦值.
在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为,求圆P的方程.
如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.(1)若点C的纵坐标为2,求|MN|;(2)若|AF|2=|AM|·|AN|,求圆C的半径.
已知椭圆C1:+=1(a>b>0)的右顶点为A(1,0),过C1的焦点且垂直长轴的弦长为1.(1)求椭圆C1的方程;(2)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处的切线与C1交于点M,N.当线段AP的中点与MN的中点的横坐标相等时,求h的最小值.
如图,已知抛物线C1:x2+by=b2经过椭圆C2:+=1(a>b>0)的两个焦点.(1)求椭圆C2的离心率;(2)设点Q(3,b),又M,N为C1与C2不在y轴上的两个交点,若△QMN的重心在抛物线C1上,求C1和C2的方程.
设椭圆C1:+=1(a>b>0),抛物线C2:x2+by=b2.(1)若C2经过C1的两个焦点,求C1的离心率;(2)设A(0,b),Q(3,b),又M,N为C1与C2不在y轴上的两个交点,若△AMN的垂心为B(0,b),且△QMN的重心在C2上,求椭圆C1和抛物线C2的方程.