在平面直角坐标系中,已知圆:和点,过点的直线交圆于两点.(1)若,求直线的方程;(2)设弦的中点为,求点的轨迹方程.
(本小题满分10分)在极坐标中,已知点为方程所表示的曲线上一动点,点的坐标为,求的最小值.
(本小题满分10分)已知矩阵,矩阵,直线经矩阵所对应的变换得到直线,直线又经矩阵所对应的变换得到直线. (1)求的值; (2)求直线的方程.
(本小题满分10分)如图所示,已知为圆的直径,,是圆上的两个点,于,交于,交于,. (1)求证:是劣弧的中点; (2)求证:.
(本小题满分16分)已知函数在处的切线与直线平行. (1)求实数的值; (2)若关于的方程在上恰有两个不相等的实数根,求实数的取值范围; (3)记函数,设是函数的两个极值点,若,且恒成立,求实数的最大值.
(本小题满分16分)对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “线性数列”. (1)若,,,数列、是否为“线性数列”?若是,指出它对应的实常数,若不是,请说明理由; (2)证明:若数列是“线性数列”,则数列也是“线性数列”; (3)若数列满足,,为常数.求数列前项的和.