已知,.(1)若,求的值;(2)若,求的单调递增区间.
已知函数为上的奇函数,且,对任意,有。(1)判断函数在上的单调性,并证明你的结论; (2)解关于的不等式
如图一,平面四边形关于直线对称,. 把沿折起(如图二),使二面角的余弦值等于.对于图二, (Ⅰ)求; (Ⅱ)证明:平面; (Ⅲ)求直线与平面所成角的正弦值.
最近,李师傅一家三口就如何将手中的10万块钱投资理财,提出了二种方案:第一种方案:将10万块钱全部用来买股,据分析预测:投资股市一年可能获利40%,也可能亏损20%(只有这两种可能),且获利的概率为.第二种方案:将10万年钱全部用来买基金,据分析预测:投资基金一年可能获利20%,也可以损失10%,也可以不赔不赚,且三种情况发生的概率分别为. 针对以上两种投资方案,请你为李师傅家选择一种合理的理财方法,并说明理由.
已知向量(为常数且),函数在上的最大值为.(Ⅰ)求实数的值;(Ⅱ)把函数的图象向右平移个单位,可得函数的图象,若在上为增函数,求的最大值.
设数列的前项和为,点在直线上,为常数,. (Ⅰ)求; (Ⅱ)若数列的公比,数列满足,求证:为等差数列,并求; (III)设数列满足,为数列的前项和,且存在实数满足,,求的最大值.