某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组, ,第五组.下图是按上述分组方法得到的频率分布直方图.按上述分组方法得到的频率分布直方图. (Ⅰ)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数; (Ⅱ)设m,n表示该班某两位同学的百米测试成绩,且已知求事件“”发生的概率.
(本小题满分10分)在锐角中,A、B、C三内角所对的边分别为a、b、c, (1)若b=3,求c; (2)求的面积的最大值。
定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y). (Ⅰ)求f(0) (Ⅱ)求证f(x)为奇函数; (Ⅲ)若f()+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.
设二次函数,已知不论为何实数恒有, (1)求证:; (2)求证:; (3)若函数的最大值为8,求值.
已知集合,. 若,求实数的取值范围.
如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(Rt∆FHE,H是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=10米,记∠BHE=θ. (1)试将污水净化管道的长度L表示为θ的函数,并写出定义域; (2)若sinθ+cosθ=,求此时管道的长度L; (3)问:当θ取何值时,污水净化效果最好? 并求出此时管道的长度.