设二次函数,已知不论为何实数恒有,(1)求证:;(2)求证:;(3)若函数的最大值为8,求值.
已知椭圆的中心在原点,焦点在轴上,且焦距为,实轴长为4(Ⅰ)求椭圆的方程; (Ⅱ)在椭圆上是否存在一点,使得为钝角?若存在,求出点的横坐标的取值范围;若不存在,请说明理由.
已知函数 .(Ⅰ)求的最小正周期;(Ⅱ)若,求的单调区间.
已知数列是公差不为零的等差数列,且成等比数列.(Ⅰ)求数列的通项公式; (Ⅱ)若,求数列的前n项和.
函数的图象与函数的图象交于两点(在线段 上,为坐标原点),过作轴的垂线,垂足分别为,并且分别交函数的图象于两点.(1)试探究线段的大小关系;(2)若平行于轴,求四边形的面积.
(本小题满分16分)如图,多面体中,两两垂直,平面平面,平面平面,.(1)证明四边形是正方形;(2)判断点是否四点共面,并说明为什么?(3)连结,求证:平面.