已知是等差数列,满足,数列满足,且为等比数列.(1)求数列的通项公式;(2)求数列的前n项和.
袋中有分别写着“团团”和“圆圆”的两种玩具共个且形状完全相同,从中任取个玩具都是“圆圆”的概率为,、两人不放回从袋中轮流摸取一个玩具,先取,后取,然后再取,……直到两人中有一人取到“圆圆”时即停止游戏.每个玩具在每一次被取出的机会是均等的,用表示游戏终止时取玩具的次数. (1)求时的概率; (2)求的数学期望.
已知时刻一质点在数轴的原点,该质点每经过秒就要向右跳动一个单位长度,已知每次跳动,该质点向左的概率为,向右的概率为. (1)求秒时刻,该质点在数轴上处的概率. (2)设秒时刻,该质点在数轴上处,求、.
有两个分类变量与,其观测值的列联表如下:
其中,均为大于的整数,若时,有的把握认为两个分类变量与有关系,那么为何值时,我们有的把握认为两个分类变量与有关系?
对于数据组
(1)做散点图,你能直观上能得到什么结论?. (2)求线性回归方程.
若,……, 求.