有一块三角形边角地,如图中△ABC,其中AB=8(百米),AC=6(百米),∠A=60°,某市为迎接2500年城庆,欲利用这块地修一个三角形形状的草坪(图中△AEF)供市民休闲,其中点E在边AB上,点F在边AC上,规划部门要求△AEF的面积占△ABC面积的一半,记△AEF的周长为l(百米).(1)如果要对草坪进行灌溉,需沿△AEF的三边安装水管,求水管总长度l的最小值;(2)如果沿△AEF的三边修建休闲长廊,求长廊总长度l的最大值,并确定此时E、F的位置.
抛物线D以双曲线的焦点为焦点.(1)求抛物线D的标准方程;(2)过直线上的动点P作抛物线D的两条切线,切点为A,B.求证:直线AB过定点Q,并求出Q的坐标;(3)在(2)的条件下,若直线PQ交抛物线D于M,N两点,求证:|PM|·|QN|=|QM|·|PN|
已知函数(1)若函数存在单调递减区间,求a的取值范围;(2)当a>0时,试讨论这两个函数图象的交点个数.
(本小题满分12分)已知各项均为正数的数列的前n项和满足(1)求数列的通项公式;(2)设数列为数列的前n项和,求证:
(本小题满分12分)如图,四棱锥P—ABCD中,底面ABCD为矩形,PD垂直于底面ABCD,AD=PD=2,E、F分别为CD、PB的中点.(1)求证:EF⊥平面PAB;(2)设求直线AC与平面AEF所成角的正弦值.
(本小题满分12分)袋中共有10个大小相同的编号为1、2、3的球,其中1号球有1个,2号球有m个,3号球有n个.从袋中依次摸出2个球,已知在第一次摸出3号球的前提下,再摸出一个2号球的概率是(1)求m,n的值;(2)从袋中任意摸出2个球,设得到小球的编号数之和为,求随机变量的分布列和数学期望E.