已知椭圆C的中心O为坐标原点,右焦点为F(1,0),A、B分别是椭圆C的左右顶点,P是椭圆C上的动点.(Ⅰ)若△PAB面积的最大值为,求椭圆C的方程;(Ⅱ)过右焦点F做长轴AB的垂线,交椭圆C于M、N两点,若|MN|=3,求椭圆C的离心率.
(本题满分13分) 已知正项数列的前项和为,且满足,.(I)求、的值,并求数列的通项公式;(II)设,数列的前项和为,证明:.
(本题满分12分)如图,在四棱锥中,为正三角形,⊥平面,⊥平面,为棱的中点,.(I)求证:∥平面;(II)求证:平面⊥平面.
(本小题满分12分)为了解甲、乙两校高三年级学生某次期末联考地理成绩情况,从这两学校中分别随机抽取30名高三年级的地理成绩(百分制)作为样本,样本数据的茎叶图如图所示:(I)若乙校高三年级每位学生被抽取的概率为0.15,求乙校高三年级学生总人数;(II)根据茎叶图,分析甲、乙两校高三年级学生在这次联考中地理成绩;(III)从样本中甲、乙两校高三年级学生地理成绩不及格(低于60分为不及格)的学生中随机抽取2人,求至少抽到一名乙校学生的概率.
(本题满分12分)已知函数.(I)求函数的单调递减区间;()在中,为锐角,且角所对的边分别为,若 ,,求面积的最大值.
(本题满分14分)已知数列满足(),,记数列的前项和为,.(I)令,求证数列为等差数列,并求其通项公式;(II)证明: (i)对任意正整数, ;(ii)数列从第2项开始是递增数列.