如图,已知一次函数的图象经过点A(2,3),AB⊥x轴,垂足为B,连接OA.(1)求此一次函数的解析式,并求出一次函数与x轴的交点C的坐标;(2)设点P为直线在第一象限内的图像上的一动点,求△OBP的面积S与x之间的函数关系式,并写出自变量x的范围;(3)设点M为坐标轴上一点,且,直接写出所有满足条件的点M的坐标.
某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图. 依据图中信息,得出下列结论: (1)接受这次调查的家长人数为200人; (2)在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°; (3)表示“无所谓”的家长人数为40人; (4)随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是. 其中正确的结论个数为()
我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c. 特例探索 (1)如图1,当∠ABE=45°,c=时,a=,b=. 如图2,当∠ABE=30°,c=4时,a=,b=. 归纳证明 (2)请你观察(1)中的计算结果,猜想,,三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式. 拓展应用 (3)如图4,在▱ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=,AB=3,求AF的长.
如图,已知二次函数:()和二次函数:()图象的顶点分别为M,N,与y轴分别交于点E,F. (1)函数()的最小值为,当二次函数,的y值同时随着x的增大而减小时,x的取值范围是; (2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明); (3)若二次函数的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程的解.
甲、乙两人在100米直道AB上练习匀速往返跑,若甲、乙分别中A,B两端同时出发,分别到另一端点处掉头,掉头时间不计,速度分别为5m/s和4m/s. (1)在坐标系中,虚线表示乙离A端的距离s(单位:m)与运动时间t(单位:s)之间的函数图象(0≤t≤200),请在同一坐标系中用实线画出甲离A端的距离s与运动时间t之间的函数图象(0≤t≤200); (2)根据(1)中所画图象,完成下列表格: (3)①直接写出甲、乙两人分别在第一个100m内,s与t的函数解析式,并指出自变量t的取值范围; ②当t=390s时,他们此时相遇吗?若相遇,应是第几次?若不相遇,请通过计算说明理由,并求出此时甲离A端的距离.
如图,已知直线与双曲线交于A(),B()两点两点(A与B不重合),直线AB与x轴交于P(,0),与y轴交于点C. (1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标. (2)若,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标. (3)结合(1),(2)中的结果,猜想并用等式表示之间的关系(不要求证明).