已知三棱柱,底面三角形为正三角形,侧棱底面,,,为的中点,为中点.(1)求证:直线平面;(2)求点到平面的距离.
在 △ A B C 中,内角 A , B , C 所对的边分别为 a , b , c ,且 a + b + c = 8 .
(1)若 a = 2 , b = 5 2 ,求 c o o s C 的值; (2)若 sin A cos 2 B 2 + sin B cos 2 A 2 = 2 sin C ,且 △ A B C 的面积 S = 9 2 sin C ,求 a 和 b 的值.
20名学生某次数学考试成绩(单位:分)的频数分布直方图如下: (1)求频率分布直方图中 a 的值; (2)分别球出成绩落在 [ 50 , 60 ) 与 [ 60 , 70 ) 中的学生人数; (3)从成绩在 [ 50 , 70 ) 的学生中人选2人,求此2人的成绩都在 [ 60 , 70 ) 中的概率.
(已知是首项为1,公差为2的等差数列,表示的前项和. (1)求及; (2)设是首项为2的等比数列,公比满足,求的通项公式及其前项和.
已知的三个顶点在抛物线:上,为抛物线的焦点,点为的中点,; (1)若,求点的坐标; (2)求面积的最大值.
已知函数 f ( x ) = x 3 + 3 x - a ( a > 0 ) ,若 f ( x ) 在 [ - 1 , 1 ] 上的最小值记为 g ( a ) . (1)求 g ( a ) ; (2)证明:当 x ∈ [ - 1 , 1 ] 时,恒有 f ( x ) ≤ g ( a ) + 4 .