设数列 a n 的前 n 项和为 S n = 2 a n - 2 n , (Ⅰ)求 a 1 , a 4
(Ⅱ)证明: a n + 1 - 2 a n 是等比数列;
(Ⅲ)求 a n 的通项公式
已知锐角△ABC中,角A.B.C所对边分别是a.b.c,,且∥ (1)求角B的大小; (2)如果b=1,求△ABC面积的最大值。
数列的前n项和记为, (1)t为何值时,数列是等比数列? (2)在(1)的条件下,若等差数列的前n项和有最大值,且,又成等比数列,求。
(本小题满分14分) 已知函数 (1)求的单调区间; (2)求证:当时,; (3)求证:
(本小题满分12分) 已知函数 (1)若求的单调区间及的最小值; (2)求的单调区间; (3)试比较的大小,,并证明你的结论。
(本小题满分12) 设二次函数满足条件: ①;②函数的图象与直线只有一个公共点。 (1)求的解析式; (2)若不等式时恒成立,求实数的取值范围。