某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在C处进行该仪器的垂直弹射,观察点A、B两地相距100m,∠BAC=60°,在A地听到弹射声音的时间比B地晚s.A地测得该仪器在C处时的俯角为15°,A地测得最高点H的仰角为30°,求该仪器的垂直弹射高度CH.(声音的传播速度为340m/s)
已知公差不为零的等差数列的前3项和,且、、成等比数列. (1)求数列的通项公式及前n项的和; (2)设的前n项和,证明:; (3)对(2)问中的,若对一切恒成立,求实数的最小值.
如图,要设计一张矩形广告,该广告含有左右大小相等在两个矩形栏目(即图中在阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏中间的中缝空白的宽度为5cm,问怎样设计每个栏目的宽和高,能使整张广告的面积最小?
已知数列{an}的前n项和Sn= (1)确定常数K并求a; (2)求数列的前n项和Tn
在中,角A,B,C的对边分别为a,b,c,若 (1)求角A; (2)已知,求面积的最大值。
设数列前项和为,且. (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足求证为等比数列,并求数列的通项公式; (Ⅲ)设,求数列的前和.