某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(Ⅰ)求应从小学、中学、大学中分别抽取的学校数目;(Ⅱ)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,(1)列出所有可能的抽取结果;(2)求抽取的2所学校均为小学的概率.
已知函数 (1)求的单调递减区间; (2)若在区间上的最大值为20,求它在该区间上的最小值。
从4名男生,3名女生中选出三名代表: (1)不同的选法共有多少种? (2)至少有一名女生的不同的选法共有多少种? (3)代表中男、女生都要有的不同的选法共有多少种?
已知函数,,在处的切线方程为. (Ⅰ)求实数的值; (Ⅱ)是否总存在实数,使得对任意的,总存在,使得成立?若存在,求出实数的取值范围;若不存在,请说明理由.
已知函数.求的单调区间; 若在处取得极值,直线y=与的图象有三个不同的交点,求的取值范围。
设. (Ⅰ)若在处有极值,求; (Ⅱ)若在上为增函数,求的取值范围.