袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)A:取出的两球都是白球;(2)B:取出的两球1个是白球,另1个是红球.
在等差数列 { a n } 中, a 3 + a 4 + a 5 = 84 , a 9 = 73 . (Ⅰ)求数列 { a n } 的通项公式; (Ⅱ)对任意 m ∈ N * ,将数列 { a n } 中落入区间 ( 9 m , 9 2 m ) 内的项的个数记为 b m ,求数列 { b m } 的前 m 项和 S m .
先在甲、乙两个靶.某射手向甲靶射击一次,命中的概率为 3 4 ,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为 2 3 ,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (Ⅰ)求该射手恰好命中一次的概率; (Ⅱ)求该射手的总得分 X 的分布列及数学期望 E X .
在如图所示的几何体中,四边形 A B C D 是等腰梯形, A B ∥ C D , ∠ D A B = 60 ° , F C ⊥ 平面 A B C D , A E ⊥ B D , C B = C D .
(Ⅰ)求证: B D ⊥ 平面 A E D ; (Ⅱ)求二面角 F - B D - C 的余弦值.
已知向量 → = m sin x , 1 , → n = 3 A cos x , A 2 cos 2 x A > 0 ,函数 f x = → m . → n 的最大值为. (Ⅰ)求 A ; (Ⅱ)将函数 y = f x 的图象向左平移 π 12 个单位,再将所得图象上各点的横坐标缩短为原来的 1 2 倍,纵坐标不变,得到函数 y = g x 的图象.求 g x 在 0 , 5 π 24 上的值域.
在平面直角坐标系中,以坐标原点 O 为极点, x 轴的正半轴为极轴建立极坐标系。已知直线 l 上两点 M , N 的极坐标分别为(2,0)( 2 3 3 , π 2 ),圆 C 的参数方程 x = 2 + 2 cos θ y = - 3 + 2 sin θ ( θ 为参数 )
(1)设 P 为线段 M N 的中点,求直线 O P 的平面直角坐标方程
(2)判断直线 l 与圆 C 的位置关系