在平面直角坐标系中,以坐标原点 O 为极点, x 轴的正半轴为极轴建立极坐标系。已知直线 l 上两点 M , N 的极坐标分别为(2,0)( 2 3 3 , π 2 ),圆 C 的参数方程 x = 2 + 2 cos θ y = - 3 + 2 sin θ ( θ 为参数 )
(1)设 P 为线段 M N 的中点,求直线 O P 的平面直角坐标方程
(2)判断直线 l 与圆 C 的位置关系
有一个湖泊受污染,其湖水的容量为V立方米,每天流入湖的水量等于流出湖的水量. 现假设下雨和蒸发平衡,且污染物和湖水均匀混合. 用,表示某一时刻一立方米湖水中所含污染物的克数(我们称其湖水污染质量分数),表示湖水污染初始质量分数. (1)当湖水污染质量分数为常数时,求湖水污染初始质量分数; (2)分析时,湖水的污染程度如何.
(1)已知是奇函数,求常数m的值; (2)画出函数的图象,并利用图象回答:k为何值时,方程=k无解?有一解?有两解?
已知函数在区间[-1,1]上的最大值是14,求a的值.
若a>0,b>0,且a+b=c,求证:(1)当r>1时,ar+br<cr;(2)当r<1时,ar+br>cr.
求函数的定义域.