市一中随机抽取部分高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是,样本数据分组为,,,,.(Ⅰ)求直方图中的值;(Ⅱ)如果上学路上所需时间不少于小时的学生可申请在学校住宿,若招生名,请估计新生中有多少名学生可以申请住宿;(Ⅲ)从学校的高一学生中任选名学生,这名学生中上学路上所需时间少于分钟的人数记为,求的分布列和数学期望.(以直方图中的频率作为概率)
如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形. (1)求证DM∥平面APC; (2)求证平面ABC⊥平面APC; (3)若BC=PC=4,求二面角P-AB-C的正弦值.
已知数列是一个等差数列且,, (1)求通项公式; (2)求的前项和的最小值.
风景秀美的湖畔有四棵高大的银杏树,记做、、、,欲测量、两棵树和、两棵树之间的距离,但湖岸部分地方围有铁丝网不能靠近,现在可以方便的测得、两点间的距离为米,如图,同时也能测量出,,,,则、两棵树和、两棵树之间的距离各为多少?
(本小题满分8分)在中,a,b,c分别是内角A,B,C所对的边,. (1)求角C; (2)若,,求的面积.
在直角坐标系中,以为圆心的圆与直线相切,求圆的方程.