已知向量 → = m sin x , 1 , → n = 3 A cos x , A 2 cos 2 x A > 0 ,函数 f x = → m . → n 的最大值为. (Ⅰ)求 A ; (Ⅱ)将函数 y = f x 的图象向左平移 π 12 个单位,再将所得图象上各点的横坐标缩短为原来的 1 2 倍,纵坐标不变,得到函数 y = g x 的图象.求 g x 在 0 , 5 π 24 上的值域.
已知a,b,c,d均为正实数,且a+b+c+d=1,求证:+++≥.
设a,b,c均为正数,证明:++≥a+b+c.
已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+3c2+6d2=5,试求a的最值.
已知a2+2b2+3c2=6,若存在实数a,b,c,使得不等式a+2b+3c>|x+1|成立,求实数x的取值范围.
已知实数a,b,c满足a+b+c=2,求a2+2b2+c2的最小值.