(1)如图,在Rt△ABC中,∠C=90°,AC=BC,小明为了求tan67.5°值,他延长CB到D,使BD=BA,连接AD,请你根据图形计算tan67.5°;(2)请你仿照小明的方法构造图形求tan75°.
如图,有一石拱桥的桥拱是圆弧形,正常水位时水面宽AB="60" m,水面到拱顶距离CD="18" m.如果水面到拱顶的距离小于3.8 m,需要采取紧急措施以防流水对桥的危害.现洪水经过,测得水面宽MN="32" m,此时是否需要采取紧急措施?请说明理由.
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台.为了配合“双11”优惠促销活动,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
AB是⊙O的直径,AB=2.点C在⊙O上,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC的延长线交于点Q,连结OC,过点C作CD⊥OC交PQ于点D.(1)求证:△CDQ是等腰三角形;(2)如果△CDQ≌△COB,求BP的长.
阅读下面的材料,回答问题: 解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4. 当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2; ∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2. (1)在由原方程得到方程①的过程中,利用 法达到降次的目的,体现了数学的转化思想. (2)解方程:(x2+3x)2+5(x2+3x)-6=0.
如图,在⊙O中,AB、CD是两条弦,OE⊥AB,OF⊥CD,垂足分别为E、F. (1)如果∠AOB=∠COD,那么OE与OF的大小有什么关系?为什么? (2)如果OE=OF,那么与的大小有什么关系?为什么?