已知抛物线的焦点为 ,过点作直线交抛物线于两点.椭圆的中心在原点,焦点在x轴上,点是它的一个顶点,且其离心率. (1)分别求抛物线和椭圆的方程; (2)经过两点分别作抛物线的切线,切线与相交于点.证明:; (3)椭圆上是否存在一点,经过点作抛物线的两条切线,为切点),使得直线过点?若存在,求出点及两切线方程,若不存在,试说明理由.
(本小题满分14分) 如图,已知正三棱柱的底面边长是,是侧棱的中点,直线与侧面所成的角为. (1)求此正三棱柱的侧棱长; (2)求二面角的正切值; (3)求点到平面的距离.
(本小题满分12分) 某计算机程序每运行一次都随机出现一个二进制的六位数,其中的各位数中,,(2,3,4,5)出现0的概率为,出现1的概率为,记,当该计算机程序运行一次时,求随机变量的分布列和数学期望(即均值).
(本小题满分12分) 已知. (1)求的值; (2)求的值.
(本小题满分14分) 已知函数(,,且)的图象在处的切线与轴平行. (I) 试确定、的符号; (II) 若函数在区间上有最大值为,试求的值.
(本小题满分14分) 在数列中, (1)求的值; (2)证明:数列是等比数列,并求的通项公式; (3)求数列。