若关于的一元二次方程.(1)求证:无论取何实数,原方程总有两个不相等的实数根;(2)若原方程有一个根为,求的值和此方程的另一个根.
为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.
(1)求购买一个甲种文具、一个乙种文具各需多少元?
(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具 x 个,求有多少种购买方案?
(3)设学校投入资金 W 元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?
如图,在 ΔABC 中, AB = BC , AD ⊥ BC 于点 D , BE ⊥ AC 于点 E , AD 与 BE 交于点 F , BH ⊥ AB 于点 B ,点 M 是 BC 的中点,连接 FM 并延长交 BH 于点 H .
(1)如图①所示,若 ∠ ABC = 30 ° ,求证: DF + BH = 3 3 BD ;
(2)如图②所示,若 ∠ ABC = 45 ° ,如图③所示,若 ∠ ABC = 60 ° (点 M 与点 D 重合),猜想线段 DF 、 BH 与 BD 之间又有怎样的数量关系?请直接写出你的猜想,不需证明.
小明放学后从学校回家,出发5分钟时,同桌小强发现小明的数学作业卷忘记拿了,立即拿着数学作业卷按照同样的路线去追赶小明,小强出发10分钟时,小明才想起没拿数学作业卷,马上以原速原路返回,在途中与小强相遇.两人离学校的路程 y (米 ) 与小强所用时间 x (分钟)之间的函数图象如图所示.
(1)求函数图象中 a 的值;
(2)求小强的速度;
(3)求线段 AB 的函数解析式,并写出自变量的取值范围.
“世界读书日”前夕,某校开展了“读书助我成长”的阅读活动.为了了解该校学生在此次活动中课外阅读书籍的数量情况,随机抽取了部分学生进行调查,将收集到的数据进行整理,绘制出两幅不完整的统计图,请根据统计图信息解决下列问题:
(1)求本次调查中共抽取的学生人数;
(2)补全条形统计图;
(3)在扇形统计图中,阅读2本书籍的人数所在扇形的圆心角度数是 ;
(4)若该校有1200名学生,估计该校在这次活动中阅读书籍的数量不低于3本的学生有多少人?
如图,在平面直角坐标系中,抛物线 y = x 2 + bx + c 与 x 轴交于点 A ( 3 , 0 ) 、点 B ( − 1 , 0 ) ,与 y 轴交于点 C .
(1)求拋物线的解析式;
(2)过点 D ( 0 , 3 ) 作直线 MN / / x 轴,点 P 在直线 MN 上且 S ΔPAC = S ΔDBC ,直接写出点 P 的坐标.