(本小题满分6分)如图,在梯形ABCD中,AD∥BC,∠B =,∠C=,AD=1,BC=4,点E为AB中点,EF∥DC交BC于点F,求EF的长。
如图,已知 ΔABC 是 ⊙ O 的内接三角形, AD 是 ⊙ O 的直径,连结 BD , BC 平分 ∠ ABD .
(1)求证: ∠ CAD = ∠ ABC ;
(2)若 AD = 6 ,求 CD ̂ 的长.
为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).
请根据图中信息答案下列问题:
(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)
(2)求扇形统计图中表示“满意”的扇形的圆心角度数;
(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?
有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图. AB 和 CD 是两根相同长度的活动支撑杆,点 O 是它们的连接点, OA = OC , h ( cm ) 表示熨烫台的高度.
(1)如图 2 - 1 .若 AB = CD = 110 cm , ∠ AOC = 120 ° ,求 h 的值;
(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为 120 cm 时,两根支撑杆的夹角 ∠ AOC 是 74 ° (如图 2 - 2 ) .求该熨烫台支撑杆 AB 的长度(结果精确到 1 cm ) .
(参考数据: sin 37 ° ≈ 0 . 6 , cos 37 ° ≈ 0 . 8 , sin 53 ° ≈ 0 . 8 , cos 53 ° ≈ 0 . 6 )
解不等式组 3 x - 2 < x , ① 1 3 x < - 2 , ② .
计算: 8 + | 2 - 1 | .