已知圆心为的圆方程为,点是直线上的一动点,过点作圆的切线,切点为.(1)当切线的长度为时,求点的坐标;(2)若的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.(3)求线段长度的最小值.
.已知:椭圆的左右焦点为;直线经过交椭圆于两点. (1)求证:的周长为定值. (2)求的面积的最大值?
.过点作斜率为的直线与双曲线有两个不同交点. ⑴求的取值范围? ⑵是否存在斜率,使得向量与双曲线的一条渐近线的方向向量平行.若存在,求出的值;若不存在,说明理由.
.如图,等边与直角梯形ABCD垂直,,,,.若E,F分别为AB,CD的中点. (1)求的取值? (2)求面SCD与面SAB所成的二面角大小?
.已知上是增函数,在[0,2]上是减函数. (Ⅰ)求c的值; (Ⅱ)求证:
.已知某商品生产成本C与产量q的函数关系式为,价格p与产量q的函数关系式为.求产量q为何值时,利润L最大?