设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点.(1)求椭圆的方程;(2)求证:三点共线.
(本小题满分13分)定义域为的奇函数满足,且当时,.(Ⅰ)求在上的解析式;(Ⅱ)当取何值时,方程在上有解?
(本小题满分13分)设函数()=2(在处取得最小值.(Ⅰ)求的值;(Ⅱ)已知函数和函数()关于点(,)对称,求函数的单调增区间.
(本小题满分13分)等比数列{}的前项和为,已知5、2、成等差数列.(Ⅰ)求{}的公比;(Ⅱ)当-=3且时,求.
己知椭圆C:的左、右焦点为、,离心率为。直线:与轴、轴分别交于点A、B,M是直线与椭圆C的一个公共点,P是点关于直线的对称点,设。(1)证明: (2)确定的值,使得是等腰三角形。
如图,已知点,直线,为平面上的动点,过作直线的垂线,垂足为点,且.(Ⅰ)求动点的轨迹的方程;(Ⅱ)过点的直线交轨迹于两点,交直线于点,已知,,求的值;