设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点.(1)求椭圆的方程;(2)求证:三点共线.
已知函数 (I)若,是否存在a,bR,y=f(x)为偶函数.如果存在.请举例并证明你的结论,如果不存在,请说明理由; 〔II)若a=2,b=1.求函数在R上的单调区间; (III )对于给定的实数成立.求a的取值范围.
已知(,是常数),若对曲线上任意一点处的切线,恒成立,求的取值范围.
已知函数,函数是函数的导函数. (1)若,求的单调减区间; (2)若对任意,且,都有,求实数的取值范围; (3)在第(2)问求出的实数的范围内,若存在一个与有关的负数,使得对任意时恒成立,求的最小值及相应的值.
已知,,且直线与曲线相切. (1)若对内的一切实数,不等式恒成立,求实数的取值范围; (2)当时,求最大的正整数,使得对(是自然对数的底数)内的任意个实数都有成立; (3)求证:.
设,,其中是常数,且. (1)求函数的极值; (2)证明:对任意正数,存在正数,使不等式成立; (3)设,且,证明:对任意正数都有:.