椭圆E:内有一点P(2,1),求经过P并且以P为中点的弦所在直线方程.
已知二阶矩阵M有特征值λ=8及对应的一个特征向量=,并且矩阵M对应的变换将点(﹣1,2)变换成(﹣2,4). (1)求矩阵M; (2)求矩阵M的另一个特征值,及对应的一个特征向量的坐标之间的关系. (3)求直线l:x﹣y+1=0在矩阵M的作用下的直线l′的方程.
已知矩阵,若矩阵A属于特征值6的一个特征向量为,属于特征值1的一个特征向量为,求矩阵A.
选修4﹣2:矩阵与变换 已知二阶矩阵M有特征值λ=3及对应的一个特征向量,并且M对应的变换将点(﹣1,2)变换成(9,15),求矩阵M.
已知矩阵A=[]的一个特征值为2,其对应的一个特征向量为=[]. (1)求矩阵A; (2)若A[]=[],求x,y的值.
已知矩阵的一个特征值λ1=3及对应的一个特征向量=. (1)求a,b的值; (2)求曲线C:x2+4xy+13y2=1在M对应的变换作用下的新曲线的方程.