已知曲线C的极坐标方程为,直线的参数方程为(t为参数,).(1)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(2)若直线经过点,求直线被曲线C截得的线段AB的长.
已知a,b,c分别为△ABC的三个内角A,B,C的对边,向量,且向量. (1)求角A的大小; (2)若的面积为,求b,c.
函数的部分图象如图所示。 (1)求的最小正周期及解析式; (2)设,求函数在区间上的最小值.
已知函数 (1)当时,求曲线在点处的切线方程; (2)当时,若在区间上的最小值为-2,求的取值范围; (3)若对任意,且恒成立,求的取值.
设. (1)当取到极值,求的值; (2)当满足什么条件时,在区间上有单调递增的区间.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式其中为常数。己知销售价格为5元/千克时,每日可售出该商品11千克。 (1)求的值; (2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大。