如图,在四面体中,,,且分别为的中点.(1)求证:;(2)在棱上是否存在一点,使得∥平面?证明你的结论.
已知,且展开式的各式系数和为243.(I)求a的值。(II)若,求中含的系数。
在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为 .(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最值;(Ⅲ)请问是否存在直线 ,∥l且与曲线C的交点A、B满足;若存在请求出满足题意的所有直线方程,若不存在请说明理由。
如图,过抛物线(>0)的顶点作两条互相垂直的弦OA、OB。⑴设OA的斜率为k,试用k表示点A、B的坐标;⑵求弦AB中点M的轨迹方程。
在平面直角坐标系xOy中,圆C的参数方程为,直线l经过点P(2,2),倾斜角。(1)写出圆的标准方程和直线l的参数方程;(2)设l与圆C相交于A、B两点,求的值。
已知x、y满足,求的最值。