如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm.(1)若P、Q是△ABC边上的两个动点,其中点P从A沿A→B方向运动,速度为每秒1cm,点Q从B沿B→C方向运动,速度为每秒2cm,两点同时出发,设出发时间为t秒.①当t=1秒时,求PQ的长;②从出发几秒钟后,△PQB是等腰三角形?(2)若M在△ABC边上沿B→A→C方向以每秒3cm的速度运动,则当点M在边CA上运动时,求△BCM成为等腰三角形时M运动的时间.
小颖为学校联欢会设计了一个“配紫色”的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,如果转盘A转出了红色,转盘曰转出了蓝色,那么红色和蓝色在一起配成了紫色,游戏者获胜.求游戏者获胜的概率.(用列表法或树状图)
甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、l0分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.甲校成绩统计表乙校成绩扇形统计图 乙校成绩条形统计图(1)请将甲校成绩统计表和图2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.
解方程:(1)x(x+3)=7(x+3);(2)x2+5x-6=0.
化简:(1)+sin45°; (2)
如图,抛物线y=-x2+bx+c与直线交于C、D两点,其中点C 在y轴上,点D的坐标为(3, ).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F,设点P的横坐标为m。(1)求抛物线的解析式;(2)当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若点P在CD上方,则四边形PCOD的面积最大时,求点P的坐标。