小颖为学校联欢会设计了一个“配紫色”的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,如果转盘A转出了红色,转盘曰转出了蓝色,那么红色和蓝色在一起配成了紫色,游戏者获胜.求游戏者获胜的概率.(用列表法或树状图)
如图所示,某建筑物楼顶有信号塔 EF ,卓玛同学为了探究信号塔 EF 的高度,从建筑物一层 A 点沿直线 AD 出发,到达 C 点时刚好能看到信号塔的最高点 F ,测得仰角 ∠ ACF = 60 ° , AC 长7米.接着卓玛再从 C 点出发,继续沿 AD 方向走了8米后到达 B 点,此时刚好能看到信号塔的最低点 E ,测得仰角 ∠ B = 30 ° .(不计卓玛同学的身高)求信号塔 EF 的高度(结果保留根号).
某校组织开展运动会,小明和扎西两名同学准备从100米短跑(记为项目 A ) ,800米中长跑(记为项目 B ) ,跳远(记为项目 C ) ,跳高(记为项目 D ) ,即从 A , B , C , D 四个项目中,分别选择一个项目参加比赛.请用画树状图或列表法求两名同学选到相同项目的概率.
如图, ΔABC 中, D 为 BC 边上的一点, AD = AC ,以线段 AD 为边作 ΔADE ,使得 AE = AB , ∠ BAE = ∠ CAD .求证: DE = CB .
解不等式组: x + 1 < 2 , 2 ( 1 - x ) ⩽ 6 · 并把解集在数轴上表示出来.
如图, ΔABC 中, AB = AC , ⊙ O 是 ΔABC 的外接圆, BO 的延长线交边 AC 于点 D .
[小题1]求证: ∠ BAC = 2 ∠ ABD ;
[小题2]当 ΔBCD 是等腰三角形时,求 ∠ BCD 的大小;
[小题3]当 AD = 2 , CD = 3 时,求边 BC 的长.