在平面直角坐标系中,△ABC的边AB在x轴上,且OA>OB,以AB为直径的圆与y轴正半轴交于点C,A、B两点的横坐标xA、xB是关于x的方程x2+3x-4=0的两个根.(1)求点C的坐标;(2)若∠ACB的平分线所在的直线l交x轴于点D,求直线l对应的一次函数关系式;(3)过点D任作一直线l′分别交射线CA、CB(点C除外)于点M、N,则+的值是否为定值?若是,求出定值;若不是,请说明理由.
(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE. (2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由.
山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答: (1)每千克核桃应降价多少元? (2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
如图,△ABC中,AB=BC,AD⊥BC于点D,DE∥AB交AC于点E,过点C在△ABC外部作CF∥AB,AF⊥CF于点F.连接EF. (1)求证:△AFC≌△ADC; (2)判断四边形DCFE的形状,并说明理由.
如图,的图象与反比例函数的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0). (1)求这两个函数的表达式; (2)请直接写出当x取何值时,y1>y2.
如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.