数列的前项和记为,点在直线,.(1)当实数为何值时,数列是等比数列;(2)在(1)结论下,设是数列的前项和,求
(本小题满分14分)对定义域分别是、的函数、,规定:函数已知函数,.(1)求函数的解析式;(2)对于实数,函数是否存在最小值,如果存在,求出其最小值;如果不存在,请说明理由.
(本小题满分14分)一个几何体是由圆柱和三棱锥组合而成,点、、在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中,,,.(1)求证:;(2)求三棱锥的体积.
(本小题满分14分)已知等差数列{an}的前项和为,且,.(1)求数列的通项公式;(2)设,是否存在、,使得、、成等比数列.若存在,求出所有符合条件的、的值;若不存在,请说明理由.
(本小题满分12分)如图1,渔船甲位于岛屿的南偏西方向的处,且与岛屿相距12海里,渔船乙以10海里/小时的速度从岛屿出发沿正北方向航行,若渔船甲同时从处出发沿北偏东的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求的值.
(本小题满分12分)某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.
由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为.(1)试确定、的值;(2)从40人中任意抽取1人,求此人听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的概率.