解下列一元一次方程 (1); (2).
抛物线与轴交于点,(点在点的左边),与轴交于点,点是该抛物线的顶点.
(1)如图1,连接,求线段的长;
(2)如图2,点是直线上方抛物线上一点,轴于点,与线段交于点;将线段沿轴左右平移,线段的对应线段是,当的值最大时,求四边形周长的最小值,并求出对应的点的坐标;
(3)如图3,点是线段的中点,连接,将沿直线翻折至△的位置,再将△绕点旋转一周,在旋转过程中,点,的对应点分别是点,,直线分别与直线,轴交于点,.那么,在△的整个旋转过程中,是否存在恰当的位置,使是以为腰的等腰三角形?若存在,请直接写出所有符合条件的线段的长;若不存在,请说明理由.
对任意一个四位数,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称为“极数”.
(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;
(2)如果一个正整数是另一个正整数的平方,则称正整数是完全平方数.若四位数为“极数”,记,求满足是完全平方数的所有.
如图,在中,,点在对角线上,,于点,的延长线交于点.点在的延长线上,且,连接.
(1)若,,求的长;
(2)求证:.
在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设.该县政府计划:2018年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍.
(1)按计划,2018年前5个月至少要修建多少个沼气池?
(2)到2018年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值.据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为.为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投入,全部用于沼气池和垃圾集中处理点建设.经测算:从今年6月起,修建每个沼气池与垃圾集中处理点的平均费用在2018年前5个月的基础上分别增加,,新建沼气池与垃圾集中处理点的个数将会在2018年前5个月的基础上分别增加,,求的值.
如图,在平面直角坐标系中,直线与直线交点的横坐标为2,将直线沿轴向下平移4个单位长度,得到直线,直线与轴交于点,与直线交于点,点的纵坐标为.直线与轴交于点.
(1)求直线的解析式;
(2)求的面积.