某市政府欲在如图所示的矩形的非农业用地中规划出一个休闲娱乐公园(如图中阴影部分),形状为直角梯形(线段和为两条底边),已知,,,其中曲线是以为顶点、为对称轴的抛物线的一部分.(1)以为原点,所在直线为轴建立直角坐标系,求曲线所在抛物线的方程;(2)求该公园的最大面积.
三人独立破译同一份密码.已知三人各自破译出密码的概率分别为 1 5 , 1 4 , 1 3 ,且他们是否破译出密码互不影响. (Ⅰ)求恰有二人破译出密码的概率; (Ⅱ)"密码被破译"与"密码未被破译"的概率哪个大?说明理由.
已知向量 m = ( sin A , cos A ) , n = ( 1 , - 2 ) ,且 m · n = 0
(Ⅰ)求 tan A 的值; (Ⅱ)求函数 f ( x ) = cos 2 x + tan A sin x , ( x ∈ R ) 的值域.
若三棱锥的三条侧棱两两垂直,且侧棱长均为 3 ,则其外接球的表面积是 .
设椭圆 C : x 2 a 2 + y 2 b 2 = 1 a > b > 0 其相应于焦点 F 2 , 0 的准线方程为 x = 4 . (Ⅰ)求椭圆 C 的方程; (Ⅱ)已知过点 F 1 = - 2 , 0 倾斜角为 θ 的直线交椭圆 C 于 A , B 两点,求证: A B = 4 2 2 - cos 2 θ ; (Ⅲ)过点 F 1 - 2 , 0 作两条互相垂直的直线分别交椭圆 C 于 A , B 和 D , E ,求 A B + D E 的最小值
设数列 { a n } 满足 a 1 = a , a n - 1 = c a n + 1 - c , c ∈ N * 其中 a , c 为实数, c ≠ 0
(Ⅰ)求数列 { a n } 的通项公式 (Ⅱ)设 a = 1 2 , c = 1 2 , b n = n ( 1 - a n ) , n ∈ N * ,求数列 { b n } 的前 n 项和 S n ; (Ⅲ)若 0 < a n < 1 对任意 n ∈ N * 成立,证明 0 < c ≤ 1