某市政府欲在如图所示的矩形的非农业用地中规划出一个休闲娱乐公园(如图中阴影部分),形状为直角梯形(线段和为两条底边),已知,,,其中曲线是以为顶点、为对称轴的抛物线的一部分.(1)以为原点,所在直线为轴建立直角坐标系,求曲线所在抛物线的方程;(2)求该公园的最大面积.
已知函数f(t)= (1)求f(t)的值域G; (2)若对于G内的所有实数x,不等式恒成立,求实数m的取值范围.
已知,. (1)若,求的值. (2)若,求的单调的递减区间;
某蔬菜基地种植甲、乙两种无公害蔬菜,生产一吨甲种蔬菜需用电力9千瓦时,耗肥4吨;生产一吨乙种蔬菜需用电力5千瓦时,耗肥5吨。现该基地仅有电力390千瓦时,肥240吨。已知生产一吨甲种蔬菜获利700元,生产一吨乙种蔬菜获利500元,在上述电力、肥的限制下,问如何安排甲、乙两种蔬菜种植,才能使利润最大?最大利润是多少?
在中,a、b、c分别是角A、B、C的对边,且为最大边,. (1)求的值; (2)若,求边长.
已知等比数列前项之和为,,,求和