设椭圆 C : x 2 a 2 + y 2 b 2 = 1 a > b > 0 其相应于焦点 F 2 , 0 的准线方程为 x = 4 . (Ⅰ)求椭圆 C 的方程; (Ⅱ)已知过点 F 1 = - 2 , 0 倾斜角为 θ 的直线交椭圆 C 于 A , B 两点,求证: A B = 4 2 2 - cos 2 θ ; (Ⅲ)过点 F 1 - 2 , 0 作两条互相垂直的直线分别交椭圆 C 于 A , B 和 D , E ,求 A B + D E 的最小值
(本小题满分13分)设数列的前项和为,对一切,点都在函数的图象上 (1)求归纳数列的通项公式(不必证明); (2)将数列依次按1项、2项、3项、4项循环地分为(),,, ;,,,;, .., 分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值; (3)设为数列的前项积,若不等式对一切 都成立,其中,求的取值范围
(本小题满分12分)如图,在四棱锥中,平面,,且,点在上. (1)求证:; (2)若二面角的大小为,求与平面所成角的正弦值.
(本小题满分12分)在中,角所对的边分别为,满足,且. (1)求C的大小; (2)求的最大值,并求取得最大值时角A,B的值.
(本小题满分12分)退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构 为了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在20~80岁(含20岁和80岁)之间的600 人进行调查,并按年龄层次[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]绘制频率分布直方 图,如图所示.若规定年龄分布在[20,40)岁的人为“青年人”,[40,60)为“中年人”, [60,80]为“老年人”.
(1)若每一组数据的平均值用该区间中点值来代替,试估算所调查的600人的平均年龄; (2)将上述人口分布的频率视为该城市在20-80年龄段的人口分布的概率.从该城市20-80年龄段市民中 随机抽取3人,记抽到“老年人”的人数为,求随机变量的分布列和数学期望.
(本小题满分14分)已知椭圆的右焦点为,且点在椭圆上,为坐标原点. (Ⅰ)求椭圆的标准方程; (Ⅱ)设过定点的直线与椭圆交于不同的两点、,且为锐角,求直线的斜率的取值范围; (Ⅲ)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为(不在坐标轴上),若直线在轴、轴上的截距分别为、,证明:为定值.