已知函数.(Ⅰ)求函数的单调递减区间;(Ⅱ)设时,函数的最小值是,求的最大值.
如图, 三棱柱 A B C - A 1 B 1 C 1 中, 侧棱 A 1 A ⊥ 底面 A B C ,且各棱长均相等. D , E , F 分别为棱 A B , B C , A 1 C 1 的中点.
(Ⅰ) 证明 E F / / 平面 A 1 C D ; (Ⅱ) 证明平面 A 1 C D ⊥平面 A 1 A B B 1 ; (Ⅲ) 求直线 B C 与平面 A 1 C D 所成角的正弦值.
在 △ A B C 中, 内角 A , B , C 所对的边分别是 a , b , c . 已知 b sin A = 3 c sin B , a = 3 , cos B = 2 3 . (Ⅰ) 求 b 的值; (Ⅱ) 求 sin 2 B - π 3 的值.
某产品的三个质量指标分别为 x , y , z , 用综合指标 S = x + y + z 评价该产品的等级. 若 S ≤ 4 , 则该产品为一等品. 现从一批该产品中, 随机抽取 10 件产品作为样本, 其质量指标列表如下:
(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率; (Ⅱ) 在该样品的一等品中, 随机抽取两件产品, (1) 用产品编号列出所有可能的结果; (2) 设事件 B 为 "在取出的 2 件产品中, 每件产品的综合指标 S 都等于4", 求事件 B 发生的概率.
如图,已知曲线 C 2 : x 2 2 - y 2 = 1 ,曲线 C 2 : y = x + 1 , P 是平面上一点,若存在过点 P 的直线与 C 1 , C 2 都有公共点,则称 P 为" C 1 - C 2 型点".
(1)在正确证明 C 1 的左焦点是" C 1 - C 2 型点"时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证); (2)设直线 y = k x 与 C 2 有公共点,求证 k > 1 ,进而证明原点不是" C 1 - C 2 型点"; (3)求证:圆 x 2 + y 2 = 1 2 内的点都不是" C 1 - C 2 型点".
已知函数 f ( x ) = 2 sin ( ω x ) ,其中常数 ω > 0 ; (1)若 y = f ( x ) 在 - π 4 , 2 π 3 上单调递增,求 ω 的取值范围; (2)令 ω = 2 ,将函数 y = f ( x ) 的图像向左平移 π 6 个单位,再向上平移1个单位,得到函数 y = g ( x ) 的图像,区间 a , b ( a , b ∈ R 且 a < b )满足: y = g ( x ) 在 a , b 上至少含有30个零点,在所有满足上述条件的 a , b 中,求 b - a 的最小值.