在△ABC中,BC=a,AC=b,a,b是方程的两个根,且.求:(1)角C的度数; (2)AB的长度.
正项数列{an}的前项和满足:-(n2+n-1)Sn-(n2+n)=0.(1)求数列{an}的通项公式an;(2)令bn=,数列{bn}的前n项和为Tn.证明:对于任意的n∈N*,都有Tn<.
设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn=,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);(2)若{bn}是等差数列,证明:c=0.
已知数列{an}中,a1=2,n∈N*,an>0,数列{an}的前n项和为Sn,且满足an+1=.(1)求{Sn}的通项公式;(2)设{bk}是{Sn}中的按从小到大顺序组成的整数数列.①求b3;②存在N(N∈N*),当n≤N时,使得在{Sn}中,数列{bk}有且只有20项,求N的范围.
设数列{an}的前n项和为Sn.已知a1=1,=an+1-n2-n-,n∈N*.(1)求a2的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有.
已知数列an=n-16,bn=(-1)n|n-15|,其中n∈N*.(1)求满足an+1=|bn|的所有正整数n的集合;(2)若n≠16,求数列的最大值和最小值;(3)记数列{anbn}的前n项和为Sn,求所有满足S2m=S2n(m<n)的有序整数对(m,n).