如图,已知切⊙于点E,割线PBA交⊙于A、B两点,∠APE的平分线和AE、BE分别交于点C、D.求证:(Ⅰ);(Ⅱ).
已知a是实数,函数,如果函数在区间[-1,1]上有零点,求实数a的取值范围。
(本小题满分14分)在直角坐标系xOy中,已知圆心在第二象限、半径为2的圆C与直线y=x相切于坐标原点O.椭圆与圆C的一个交点到椭圆两焦点的距离之和为10。(1)求圆C的方程; (2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆的右焦点F的距离等于线段OF的长,若存在求出Q的坐标;若不存在,请说明理由。
如图示,图(1)四边形ABCP是直角梯形,AB//CP,AB⊥BC,PC=2AB=2BC=4,D是PC的中点,将△PAD沿AD折成如图(2)所示的直二面角P-AD-C,E是PC的中点,交PB于点F.(I) 证明平面;(II) 证明平面EFD; (III) 求四面体P-EFD的体积
已知三点的坐标分别是,其中. (1)若,求的值; (2)若,求的值.
如图中心在原点,焦点在轴上的椭圆,离心率,且经过抛物线的焦点. (I)求椭圆的标准方程;(II)若过点B(2,0)的直线L(斜率不等于零)与椭圆交于不同的两点E、F(E在B、F之间),试求OBE与OBF面积1:2,求直线L的方程。