设函数在上满足, 且在闭区间[0, 7]上只有. ⑴试判断函数的奇偶性;⑵试求方程在闭区间上的根的个数, 并证明你的结论.
(本小题满分12分)如图所示,平面平面,是等边三角形,是矩形,是的中点,是的中点,与平面成角.(1)求证:平面;(2)若,求二面角的度数;(3)当的长是多少时,点到平面的距离为?并说明理由
甲、乙、丙三人组成一组,参加一个闯关游戏团体赛,三人各自独立闯关,其中甲闯关成功的概率为,甲、乙都闯关成功的概率为,乙、丙都闯关成功的概率为,每人闯关成功得2分,三人得分之和记为小组团体总分.(1)求乙、丙各自闯关成功的概率;(2)求团体总分为4分的概率;(3)若团体总分不小于4分,则小组可参加复赛,求该小组参加复赛的概率.
(本小题满分12分)如图,正方形A1BA2C的边长为4,D是A1B的中点,E是BA2上的点,将△A1DC及△A2EC分别沿DC和EC折起,使A1、A2重合于A,且二面角A-DC-E为直二面角。(1)求证:CD⊥DE; (2)求AE与面DEC所成的角.
(本小题满分12分)美国次贷危机引发全球金融动荡,波及中国沪深两大股市,甲、乙、丙3人打算趁股市低迷之际买入股票。三人商定在圈定的10只股票中各自随机购买1只(假定购买时,每只股票的基本情况完全相同)(1)求甲、乙、丙3人恰好买到相同股票的概率;(2)求甲、乙、丙3人中至少有2人买到相同股票的概率.
(本小题满分12分)(1)已知,求的值;(2)若的展开式中第3项为常数项,求.