甲、乙、丙三人组成一组,参加一个闯关游戏团体赛,三人各自独立闯关,其中甲闯关成功的概率为,甲、乙都闯关成功的概率为,乙、丙都闯关成功的概率为,每人闯关成功得2分,三人得分之和记为小组团体总分.(1)求乙、丙各自闯关成功的概率;(2)求团体总分为4分的概率;(3)若团体总分不小于4分,则小组可参加复赛,求该小组参加复赛的概率.
已知数列{an}满足:a1=1,a2=2,2an=an-1+an+1(n≥2,n∈N*),数列{bn}满足b1=2,anbn+1=2an+1bn. (1)求数列{an}的通项an; (2)求证:数列为等比数列,并求数列{bn}的通项公式.
等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.
(1)求数列{an}的通项公式; (2)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前2n项和S2n.
已知等差数列{an}的前5项和为105,且a10=2a5. (1)求数列{an}的通项公式; (2)对任意m∈N*,将数列{an}中不大于72m的项的个数记为bm,求数列{bm}的前m项和Sm.
(1)已知两个等比数列{an},{bn},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若数列{an}唯一,求a的值; (2)是否存在两个等比数列{an},{bn},使得b1-a1,b2-a2,b3-a3,b4-a4成公差不为0的等差数列?若存在,求{an},{bn}的通项公式;若不存在,说明理由.
设{an}是公比为正数的等比数列,a1=2,a3=a2+4, (1)求{an}的通项公式; (2)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.