某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费.如果超过20吨,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为x吨,应收水费为y元.(1)分别写出每月用水量未超过20吨和超过20吨,y与x间的函数关系式;(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨?
已知:如图,四边形ABCD是菱形,对角线AC与BD相交于O,. (1)求证:△ABD是等边三角形; (2)求 AC的长(结果可保留根号).
先化简:,再选择一个你喜欢的x值代入求值.
解不等式:,并将解集在数轴上表示出来.
计算: .
如图,已知点A(−3,5)在抛物线y=x2+c的图象上,点P从抛物线的顶点Q出发,沿y轴以 每秒1个单位的速度向正方向运动,连结AP并延长,交抛物线于点B,分别过点A、B作x轴的垂线,垂 足为C、D,连结AQ、BQ. (1)求抛物线的解析式; (2)当A、Q、B三点构成以AQ为直角边的直角三角形时,求点P离开点Q多少时间? (3)试探索当AP、AC、BP、BD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)时,点P离开点Q的时刻.