如图,AB=AC,AD⊥BC于点D,AD=AE,AB平分∠DAE交DE于点F.请 你写出图中3对全等三角形,并选取其中1对加以证明.
如图,在平面直角坐标系中,点,点分别在轴,轴的正半轴上,且满足.(1)求点,点的坐标.(2)若点从点出发,以每秒1个单位的速度沿射线运动,连结.设的面积为,点的运动时间为秒,求与的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,是否存在点,使以点为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由.
某工厂计划为震区生产两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套型桌椅(一桌两椅)需木料,一套型桌椅(一桌三椅)需木料,工厂现有库存木料.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套型桌椅的生产成本为100元,运费2元;每套型桌椅的生产成本为120元,运费4元,求总费用(元)与生产型桌椅(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用生产成本运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.
已知:正方形中,,绕点顺时针旋转,它的两边分别交(或它们的延长线)于点.当绕点旋转到时(如图1),易证.(1)当绕点旋转到时(如图2),线段和之间有怎样的数量关系?写出猜想,并加以证明.(2)当绕点旋转到如图3的位置时,线段和之间又有怎样的数量关系?请直接写出你的猜想.
武警战士乘一冲锋舟从地逆流而上,前往地营救受困群众,途经地时,由所携带的救生艇将地受困群众运回地,冲锋舟继续前进,到地接到群众后立刻返回地,途中曾与救生艇相遇.冲锋舟和救生艇距地的距离(千米)和冲锋舟出发后所用时间之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)请直接写出冲锋舟从地到地所用的时间.(2)求水流的速度.(3)冲锋舟将地群众安全送到地后,又立即去接应救生艇.已知救生艇与地的距离(千米)和冲锋舟出发后所用时间之间的函数关系式为,假设群众上下船的时间不计,求冲锋舟在距离地多远处与救生艇第二次相遇?
三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一:表一
(1)请将表一和图一中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.