如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由; (2)线段BD、DE、EC三者之间有什么数量关系?写出你的判断过程.
(1)解不等式组 (2)解方程:x2+3x-2=0;
(1)计算: (2)先化简,再求值:, 其中x=.
如图1,已知线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系: ; (2)仔细观察,在图2中“8字形”的个数: 个;(3)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试写出∠P与∠D、∠B之间数量关系,并说明理由.
在5×6的方格图中,在图1中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分),在图2中,将线段A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分),(1)在图3中,画出将折线A1A2A3A4向右平移1单位后的图形,并用阴影画出由这两条折线所围成的封闭图形.(2)设上述三个图形中,矩形ABCD分别除去阴影部分后剩余部分的面积记为S1、S2、S3,则S1= ,S2= ,S3= .(3)如图4,在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想草地部分的面积是 .(用含a、b的代数式表示)
计算图中阴影部分的面积.