如图,在三棱柱中,底面,,点是的中点. (Ⅰ)求证:; (Ⅱ)求证:∥平面. (Ⅲ)设,,在线段上是否存在点,使得?若存在,确定点的位置; 若不存在,说明理由.
已知分别为三个内角的对边,. (1)求; (2)若,的面积为,求.
中,为边上的一点,,求.
已知抛物线C:,P为C上一点且纵坐标为2,Q,R是C上的两个动点,且. (1)求过点P,且与C恰有一个公共点的直线的方程; (2)求证:QR过定点.
已知椭圆过点离心率, (1)求椭圆方程; (2)若过点的直线与椭圆C交于A、B两点,且以AB为直径的圆过原点,试求直线的方程.
已知函数且,其中、 (1)求m的值; (2)求函数的单调增区间.