某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/t)分成六段:后得到如图4的频率分布直方图.问:(1)求这40辆小型车辆车速的众数和中位数的估计值.(2)若从车速在的车辆中任抽取2辆,求抽出的2辆车中车速在的车辆数的分布列及其均值(即数学期望).
设集合 P n = { 1 , 2 , . . . , n } , n ∈ N * .记 f ( n ) 为同时满足下列条件的集合 A 的个数: ① A ⊂ P n ;②若 x ∈ A ,则 2 x ∉ A ;③若 x ∈ C P x A ,则 2 x ∉ C P x A . (1)求 f ( 4 ) ; (2)求 f ( n ) 的解析式(用 n 表示).
设 ζ 为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时, ζ = 0 ;当两条棱平行时, ζ 的值为两条棱之间的距离;当两条棱异面时, ζ = 1 . (1)求概率 P ( ζ = 0 ) ; (2)求 ζ 的分布列,并求其数学期望
已知实数 x , y 满足: x + y < 1 3 , 2 x - y < 1 6 ,
求证: y < 5 16 .
在极坐标中,已知圆 C 经过点 P ( 2 , π 4 ) ,圆心为直线 ρ sin ( θ - π 3 ) = - 3 2 与极轴的交点,求圆 C 的极坐标方程.
已知矩阵 A 的逆矩阵 A - 1 = [ - 1 4 1 2 3 4 - 1 2 ] ,求矩阵 A 的特征值.