某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/t)分成六段:后得到如图4的频率分布直方图.问:(1)求这40辆小型车辆车速的众数和中位数的估计值.(2)若从车速在的车辆中任抽取2辆,求抽出的2辆车中车速在的车辆数的分布列及其均值(即数学期望).
本小题满分12分) 如图,在棱长为a的正方体ABCD—A1B1C1D1中,E、F分别为棱AB和BC的中点,EF交BD于H。 (1)求二面角B1—EF—B的正切值; (2)试在棱B1B上找一点M,使D1M⊥平面EFB1,并证明你的结论.
.(本小题满分12分)已知函数(1)讨论函数的单调区间;(2)求函数在[0,2]上的最大值和最小值.
(本小题满分10分)用平行于四面体的一组对棱、的平面截此四面体(如图).(1)求证:所得截面是平行四边形;(2)如果.求证:四边形的周长为定值.
(本小题满分12分)已知函数.(I)若,求函数的极值;(II)若对任意的,都有成立,求的取值范围.
(本小题满分12分)已知中心在原点,焦点在轴上的椭圆C的离心率为,且经过点,过点P(2,1)的直线与椭圆C相交于不同的两点A、B.(Ⅰ)求椭圆C的方程;(Ⅱ)是否存直线,满足?若存在,求出直线的方程;若不存在,请说明理由.